Using the law of levers it is possible to determine the areas of the figures from the known centre of mass of the other figures.
The points A and B are on the curve. The line AC is parallel to the axis of the parabola. The line BC is tangent to the parabola.
My first proposition states:
The area of the triangle ABC is exactly three times the area bounded by the parabola and the secant line AB.
Proof: Let D be the midpoint of AC. The point D is the fulcrum of a lever, which is the line JB. The points J and B are at equal distances from the fulcrum. As Archimedes had shown, the center of gravity of the interior of the triangle is at a point I on the "lever" so located that DI:DB = 1:3. Therefore, it suffices to show that if the whole weight of the interior of the triangle rests at I, and the whole weight of the section of the parabola at J, the lever is in equilibrium. If the whole weight of the triangle rests at I, it exerts the same torque on the lever as if the infinitely small weight of every cross-section EH parallel to the axis of the parabola rests at the point G where it intersects the lever. Therefore, it suffices to show that if the weight of that cross-section rests at G and the weight of the cross-section EF of the section of the parabola rests at J, then the lever is in equilibrium. In other words, it suffices to show that EF:GD = EH:JD. That is equivalent to EF:DG = EH:DB. And that is equivalent to EF:EH = AE:AB. But that is just the equation of the parabola.
"Give me a fulcrum and I will move the world!"
- Archimedes
No comments:
Post a Comment